Our mission

We use cutting-edge technology grounded in computational neuroscience to restore lost neurological function. We rebuild the bridge between body, mind, and self.

Where are we making the difference

At the intersection of neuroscience, engineering, and digital innovation, we are redefining what’s possible in neurorehabilitation and assistive technologies. From restoring sensorimotor functions to revolutionizing vagus nerve stimulation and transforming at-home therapy through digital health platforms, our work is driven by one goal: empowering people to reclaim autonomy and quality of life.

Bioelectronic medicine

Sensorimotor bionics

Digital health

Running grants

DiabeteManager

The DiabetManager project aims to develop the first fully implantable, closed-loop neuroprosthesis for personalized glucose regulation in diabetes. Unlike current therapies that rely on patient compliance and often cause side effects, our solution uses intelligent vagus nerve stimulation (VNS) to regulate metabolism automatically and adaptively. Our approach integrates advanced AI models, bioelectronic interface design, and experimental validation in both animals and humans. By uncovering the mechanisms of VNS and creating targeted, side-effect-free stimulation protocols, we lay the foundation for a new generation of bioelectronic medicine, transforming diabetes care into a precise, automated process.

NEURO-SOCK

NEURO-SOCK is a non-invasive, fully wearable device designed to restore natural sensation in individuals affected by sensory loss due to diabetes, amputation, or neurological conditions such as multiple sclerosis. The system integrates soft robotic stimulation with wearable sensors that capture real-time environmental interactions. These signals are processed by AI algorithms that tailor electrical stimulation to target specific nerves, reawakening lost sensations. Successfully tested in 12 patients with diabetic neuropathy, NEURO-SOCK has already demonstrated the ability to restore foot sensation. Current efforts focus on optimizing the device and evaluating its long-term health benefits, including improved skin health, reduced cardiovascular stress, and decreased risk of complications associated with inactivity and neuropathy-related conditions. With no immediate solutions currently available, NEURO-SOCK offers a promising new avenue for rehabilitation and quality-of-life improvement.

Publications

Click on the picture to be redirected to the article’s DOI

The Lancet – Digital Health

March 2025

Clinical trials for implantable neural prostheses: understanding the ethical and technical requirements

M Ienca, G Valle, S Raspopovic

iScience

January 2025

Click to read the paper

Amputees but not healthy subjects optimally integrate non-spatially matched visuo-tactile stimuli

GV Aurucci, G Preatoni, G Risso, S Raspopovic

Nature Communications

December 2024

Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy

N Gozzi, L Chee, I Odermatt, S Kikkert, G Preatoni, G Valle, N Pfender, F Beuschlein, N Wenderoth, C Zipser, S Raspopovic

Cell Med

December 2024

Click to read the paper

Unraveling the physiological and psychosocial signatures of pain by machine learning

NGozzi, G Preatoni, F Ciotti, M Hubli, P Schweinhardt, A Curt, S Raspopovic

Nature Communications

July 2024

Click to read the paper

Towards enhanced functionality of vagus neuroprostheses through in silico optimized stimulation

F Ciotti, R John, N Katic Secerovic, N Gozzi, A Cimolato, N Jayaprakash, W Song, V Toth, T Zanos, S Zanos, S Raspopovic

Latest news

ORF interview

May 6, 2025, 6:29 PM – ORF 2
Austria

Neuroprosthetics Offer New Hope for Diabetic Neuropathy 

More than 600,000 people in Austria suffer from diabetes, and around a quarter of them develop what is known as neuropathic foot syndrome. Type 2 diabetics, in particular, develop such nerve damage in one or even both feet. If circulatory disorders also occur, this leads to chronic wounds and infections. Research is underway at the Medical University of Vienna on special “socks” for patients. 

Guide to the Future: Swiss Federal Institute of Technology

The first destination is Switzerland, home to two Federal Institutes of Technology: ETH in Zurich and EPFL in Lausanne. Both institutes bring together top scientists from around the world, including researchers from Serbia.

At ETH Zurich, a research group led by Prof. Dr. Staniša Raspopović is developing neural prostheses — systems that connect the patient’s nervous system to a prosthetic limb replacing an amputated arm or leg.

Plus SRF

Sep 30, 2019 – Plus SRF
Switzerland

Leg prosthesis with feeling

A new leg prosthesis that uses neurostimulation—i.e., implanted electrodes—to stimulate the nerves in the leg stump restores a sense of the foot and the ground. Patients also suffer less from phantom pain.

Our team

Here we are!

Prof. Dr. Stanisa Raspopovic

Prof. Dr. Stanisa Raspopovic

Principal investigator
Dr. Andrea Cimolato

Dr. Andrea Cimolato

Postdoctoral Researcher
Dr. Natalija Secerovic

Dr. Natalija Secerovic

Postdoctoral Researcher
Anna Sparapani

Anna Sparapani

PhD student
Thien Le

Thien Le

PhD student
Titouan Brossy

Titouan Brossy

PhD student
Melina Lorenz

Melina Lorenz

Master student
Felix Zadro

Felix Zadro

Master student
Arianna Aresi

Arianna Aresi

Master student
Giulia Lucia Maioli

Giulia Lucia Maioli

Master student
Hyunjeong Lee

Hyunjeong Lee

Master student
Gian Maria Velardi

Gian Maria Velardi

Master student
Samuel Stolarik

Samuel Stolarik

Software Engineer

Alumni

Valerio Aurucci

Valerio Aurucci

Visiting PhD student

Now working at Hamilton, Chur, Switzerland

Dr. Noemi Gozzi

Dr. Noemi Gozzi

Visiting PhD student

Now working at META, New York City, US

Noemi Paparo

Noemi Paparo

Master student

Now PhD Student at Università degli Studi di Pisa
Laboratory of Prof. Alberto Greco

Zahra Taraghdari

Zahra Taraghdari

Master student

Follow us in our social media

Open positions

🧠 Why Neuroengineering Lab?

  • We’re pioneers in neurotechnologies for Bioelectronic medicine, Telemedicine, and Sensorimotor Bionics

  • Interdisciplinary environment

  • Translational research shaping innovative digital health solutions

🎓 What you bring

  • University degree in Computer Science, Software Engineering, or related fields

  • Strong programming expertise (Python, C++, and similar)

  • Excellent English communication skills (written and verbal)

  • Strong problem-solving and analytical skills

     Bonus Points

  • Experience in creating mobile applications (healthcare apps are a plus) and data processing pipelines

  • Background in implementing secure coding practices, including encryption and memory safety

  • Exceptional teamwork and communication skills

💼 Role: Software Engineer (20–40 hrs)

    Your Key Responsibilities

  • Development and maintenance of software applications for next generation neuroprosthetic devices

  • Implementation of data science related techniques, potentially including AI approaches

  • Development of secure, real-time data collection pipelines for patient monitoring including encryption strategies and secure storage management

🎁 What we offer

  • The minimum yearly salary for this position is currently 52.007 euros gross (for full time, split in 14 instalments per year)

  • A challenging and meaningful role in an interdisciplinary research environment

  • The opportunity to shape innovative digital health solutions

  • Support for personal and professional development

❓🤔Are you interested?

Visit the official job proposal here.

Send:

  • CV
  • Motivation letter
  • Transcript of Bachelor and Master Degree

at bewerbungen@meduniwien.ac.at. Please include the reference number: 431-1/25

📄Download Position Flyer

📄Download Position Flyer


🧠 Why Neuroengineering Lab?

  • We’re pioneers in neurotechnologies for Bioelectronic medicine, Telemedicine, and Sensorimotor Bionics

  • Interdisciplinary environment

  • Translational research shaping innovative digital health solutions

🎓 What you bring

  • Master’s university degree in Artificial Intelligence, Biomedical Engineering, Data Science, Computer Science, or related fields.

  • Strong programming expertise (Python, C++, or similar).

  • Deep understanding of ML background

  • Excellent English communication skills (written and verbal).

  • Strong problem-solving and analytical skills.

     Bonus Points
  • Knowledge of GenAI code assistants (e.g., Github Copilot, Cursor.sh, v0.dev)

  • Familiarity with biological signal processing

  • Teamwork and communication skills.

💼 Role: PhD student, Vienna, full-time, on-site

    Your Key Responsibilities
  • Development of the AI/ML algorithms

  • Work closely with neuroscientists, engineers, and clinicians to translate AI models into real-life brain-machine interfaces

  • Design AI-driven closed-loop systems for changing neural functions (e.g. new vagus nerve stimulation devices)

  • Participate in in vivo experiments, data acquisition, signal preprocessing, and interpretation

  • Publish research findings in high-impact journals and present at conferences

🎁 What we offer

  • 56 000 euros annual gross salary (14 instalments per year)
  • A challenging and meaningful role in an interdisciplinary research environment surrounded by colleagues from all around the world

  • The opportunity to shape innovative treatment solutions

  • Support for personal and professional development🎁 What we offer

❓🤔Are you interested?

Send your

  • CV
  • Transcript of records from Bachelorìs and Master’s Degree
  • Motivation letter

at neuroenglab2019@gmail.com

Master Thesis: Development of an AI-Driven Approach to Model the Psychological and Physical Aspects of Pain

Goal

The student will gain comprehensive knowledge of the multifaceted nature of chronic pain, including its physical, social, and emotional components, as well as its impact on quality of life and the healthcare system. They will explore the state-of-the-art in pain perception and artificial intelligence through scientific literature. The primary goal of the project is to utilize machine learning models to disentangle the complex components of pain and correlate pain perception with additional markers, such as psychological and behavioral factors. Starting from longitudinal data concerning physiological responses to pain (HRV, BVP, temperature, and SC), and psychological evaluations the student will: 

1) Monitor and analyze the longitudinal dynamics of physiological and psychological features, identifying patterns and interdependencies over time

2) Define and implement a machine learning approach for disentangling the psychological and physiological component of pain (e.g. Multilevel regression models)

3) Interpret the obtained results and contextualize model output with reported psychological assessments

Recommended skills

Good programming skills (Python), ability to work large dataset, knowledge of AI and Machine Learning algorithms, Signal Processing and Statistical Analysis. Highly motivated, prone to interact and work with patients.

Extra skills

App development (Flutter), Computational neuroscience, neuroscience of Pain, Deep Learning, Explainable AI, use of high-performance computing (clusters)

Open Clinical Trials

[deutsche Version unten]

Virtual reality platform and transcutaneous electrical nerve stimulation for stroke rehabilitation

Are you recovering from a stroke and looking to improve your arm movement and body perception?

We are conducting a clinical study at the Medical University of Vienna to test a new rehabilitation approach that combines Virtual Reality and electrical stimulation. The goal is to find out whether this innovative therapy can enhance recovery more effectively than standard physiotherapy.

🏥 Location: Department of Neurology, Medical University of Vienna

⏳ Duration: 5 weeks

👥 Who can join: People suffering from stroke with arm or hand movement difficulties (acute phase: within 1 week from the last stroke event)

💡 What you do: Take part in 12 short therapy sessions, plus a few medical assessments

💬 Share your experience: A short interview about how you felt during the program

🎥 Sessions are recorded for analysis — but your identity is protected

Participation is voluntary and free of charge. You can withdraw at any time without affecting your medical care.

If you’re interested or want to learn more, please contact us with the apposti form.

——————————————————————————————————————————————————————————————————————————-

Virtuelle Realitätsplattform und transkutane elektrische Nervenstimulation zur Schlaganfallrehabilitation

Erholen Sie sich gerade von einem Schlaganfall und möchten die Beweglichkeit und das Körpergefühl in Ihrem Arm verbessern?

Wir führen an der Medizinischen Universität Wien eine klinische Studie durch, in der eine neue Rehabilitationsmethode getestet wird, die Virtuelle Realität und elektrische Nervenstimulation kombiniert. Ziel ist es herauszufinden, ob diese innovative Therapie die Erholung wirksamer unterstützen kann als herkömmliche Physiotherapie.

🏥 Ort: Universitätsklinik für Neurologie, Medizinische Universität Wien

Dauer: 5 Wochen

👥 Wer kann teilnehmen: Personen nach einem Schlaganfall mit Beeinträchtigungen der Arm- oder Handbewegung (akute Phase: innerhalb von 1 Woche nach dem letzten Schlaganfallereignis)

💡 Was Sie erwartet: Teilnahme an 12 kurzen Therapieeinheiten sowie einigen medizinischen Untersuchungen

💬 Ihre Erfahrung zählt: Kurzes Interview darüber, wie Sie das Trainingsprogramm erlebt haben

🎥 Die Sitzungen werden zu Analysezwecken aufgezeichnet – Ihre Identität bleibt dabei geschützt

Die Teilnahme ist freiwillig und kostenlos. Ein Ausstieg ist jederzeit möglich, ohne dass Ihre medizinische Betreuung beeinträchtigt wird.

📧 Wenn Sie interessiert sind oder mehr erfahren möchten, kontaktieren Sie uns bitte.

Wenn Sie Interesse haben oder mehr erfahren möchten, kontaktieren Sie uns bitte über das Kontaktformular.

 

[deutsche Version unten]

A telemonitoring tool to longitudinally monitor pain and its multidimensional components in patients

Are you struggling with chronic pain?

We are conducting a clinical study at the Medical University of Vienna to test a new AI-based telemonitoring system designed to track and understand pain in all its dimensions — physical, emotional, and cognitive. This tool could improve how pain is monitored and managed in the future.

  • 🏥 Location: Special Anesthesia and Pain Therapy, University Hospital Vienna

  • Duration: Approx. 2 weeks

  • 👥 Who can join: Individuals with who experience chronic pain

  • 💡 What you do: Use the digital tool, take part in assessments, and share your experience

  • 💬 Optional interview to give feedback about the system

Participation is voluntary and free of charge. You may withdraw at any time without affecting your care.

Interested or want to know more? Contact us with the apposit contact form.

 ——————————————————————————————————————————————————————————————————————————

Ein Telemonitoring-Tool zur langfristigen Erfassung von Schmerz und seinen multidimensionalen Komponenten bei Patient:innen

Leben Sie leiden an chronischen Schmerzen?

Wir führen an der Medizinischen Universität Wien eine klinische Studie durch, um ein neues KI-basiertes Telemonitoring-System zu testen, das Schmerzen in all ihren Dimensionen – körperlich, emotional und kognitiv – erfassen und besser verstehen soll. Dieses Tool könnte die Überwachung und Behandlung von Schmerzen in der Zukunft erheblich verbessern.

🏥 Ort: Spezielle Anästhesie und Schmerztherapie, Universitätsklinikum Wien

Dauer: Ca. 2 Wochen

👥 Wer kann teilnehmen: Personen, die unter chronischen Schmerzen leiden

💡 Was Sie tun: Anwendung des digitalen Tools, Teilnahme an Bewertungen und Teilen Ihrer Erfahrungen

💬 Optionales Interview, um Feedback zum System zu geben

Die Teilnahme ist freiwillig und kostenlos. Sie können jederzeit ohne Auswirkungen auf Ihre medizinische Versorgung aus der Studie aussteigen.

Interessiert oder möchten Sie mehr erfahren? Kontaktieren Sie uns über das entsprechende Kontaktformular.